在了这个工厂。
这个也是现阶段来说世界上功率最大的质子交换膜电解槽,也是华兴科技集团研制的第二代产品。
多年来,华源能源科技集团公司一直在研究一种更为灵活的替代性电解技术,而质子交换膜电解槽技术则是集团公司主要研发的技术路线。
跟传统的这与传统的碱性电解技术正好相反,这种质子交换膜电解槽将将两个分别分解产生氧和氢的电极隔离开来,这种电解槽可以在几毫秒内作出响应,并可短时运行于三倍于其额定功率的功率水平下。
也就是说即使发电量突然大增,这个电解槽也能轻松储存过剩的电能,这对于以风力发电为主要的电力能源来说是很适合的。
之前的风力发电在大风天气里面许多风力发电机却要停止工作,最主要的原因是因为产能会过剩,因为储能装置也不可能储备太多的电能。
其实这个也是可再生能源面临的主要挑战——因天气条件变化而带来生产波动,要想做到像传统发电厂一样基于需求对发电量进行调节,因此有的时候也会造成很大的浪费。
这就是风力发电机经常在大风天停转,二氧化碳排放量大的传统燃煤电厂在无风天重新并网的原因所在,这个已经成了一些努力发展风力发电产业国家普遍存在的情况。
华源能源科技集团公司在针对这个情况一边研发储能技术一边也是发展风力发电制氢的技术。
氢是非常好的能量载体,而且是氢燃料原料,同时也是重要的化工原料,将风力发电厂和光伏发电厂过剩的电能转化为氢能源储备起来一直是华源能源科技集团公司的技术研发的方向。
而制氢制氧工厂关键设备的研发华兴科技集团公司包括华源能源科技集团和南奥集团以及电化学研究院、蓝星水处理公司等都是一直在发力。
华源能源科技集团公司主导研发的质子交换膜电解槽之前在实验室里面试制出了额定功率为10千瓦的实验性电解槽,产品能在峰值功率在30千瓦左右的功率下运行,通过大量试验基础上也是走出了实验室。
华兴科技集团公司旗下的电化学研究院在质子交换膜技术上持续研发了十多年,尤其是华兴科技集团在燃料电池技术产品上获利无数,所以在这方面的研发投入可以说是世界上最大的,所以在这方面已经达到了世界一流的水平,甚至掌握了一些黑科技。
电化学研究院研制出了一种具有卓越电化学性能的电极材料,并且发明了一种可以让两种离子通