一得到解决。首先就是打印的器官组织必须是要严格按照精细数字器官模型数据进行打印,不能有半点偏差。而这就要求整个生物3D打印机必须要有足够高的精度,能够打印微米级别的细胞。
其次打印出来的必须是一比一实体器官组织,不能像普通的3D打印机那样,只打印个空壳出来,这肯定是不行的。
再接着就是打印时间,这个在生物3D打印机打印器官组织上非常关键。要保证在确保足够精度打印的同时,还要保证其较快的打印速度。
要知道人体内细胞并不是一成不变的,而是时时刻刻变化着的,细胞不断衰老死亡同时又不断更新生成。细胞寿命长短不一,肠粘膜细胞的寿命为3天,肝细胞寿命为150天,味蕾细胞的寿命为10天,指甲细胞的寿命为6到10个月,而脑、骨髓、眼睛里的神经细胞的寿命有几十年,同人体寿命几乎相等,而血液中的白细胞有的只能活几小时。
这些细胞都在交替进行更新代谢,从而实现器官组织细胞的更新换代,这就要求整个打印时间必须要迅速。不能只为了保证精度,而耗费太长时间。如果打印时间太长的话,那么打印出来的器官组织将会失去活性,变成死肉一块,没有任何医用价值了。
所以在生物3D打印当中,时间也是科研人员必须要攻克的一项重要难题之一。
最后也是最难的一项技术,如何保证打印器官的活性,即便是快速打印,打印一个完整的器官组织也需要几十上百个小时,如何保证打印出来的器官组织的活性,这是这项技术中最为关键的一项问题。
如果不能解决这个问题,那么整个项目将会失败,打印出来的就是死肉一块,没有任何医用价值可言。
不光是打印过程中和打印出来的器官组织要保持活性,还要保证打印所需的耗材,也就是细胞们的活性。只有活的细胞才能打印出来活的器官组织。如果细胞死了,打印出来的肯定是一块死肉。
这项技术难度非常高,要保证所有细胞都必须是健康成活的,如果其中持续较多的坏死细胞,也会影响最终所打印出来器官组织的质量,甚至是存活率和功能完整性。
而且这些细胞还要经过打印这道工序,如何确保这些细胞成活率,这也是摆在科研人员面前的一个重要难题。
其实这项技术中的难题远非这几个,还有很多很多。甚至一些平常都不怎么重要的问题,在这上面都可能成为卡脖子的关键。
再比如器官组织的种类不同,